By Alan R. Katritzky, * Ian J. Ferguson, and Ranjan C. Patel, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

Variable-temperature ¹³C n.m.r. shows the title compound to be the *trans*-isomer which adopts a symmetric conformation with the *C*-methyl groups diequatorial and the *N*-methyl groups symmetrically diaxial diequatorial (*aeae*). The *N*-inversion barrier ($\triangle G_c^{\ddagger}$ 7.7 kcal mol⁻¹) provides strong evidence for the three conformational sets previously postulated for 1,2,4,5-tetra-azacyclohexanes.

CONTINUING interest in the 1,2,4,5-tetra-azacyclohexane ring system prompted us to extend previous investigations 2 to the highly substituted *trans*-1,2,3,4,5,6-hexamethyl-1,2,4,5-tetra-azacyclohexane (1).

sym-Dimethylhydrazine reacts with acetaldehyde to give a mixture of *cis*- and *trans*-1,2,3,4,5,6-hexamethyl-1,2,4,5-tetra-azacyclohexanes.³ One isomer is crystalline and can be separated from the mother liquor. The authors did not discuss the configuration of the *C*methyl groups in this solid; however, the low-temperature ¹³C n.m.r. of solutions of the crystalline solid shows dynamic splitting of the *N*-methyl signal (ΔG_c^{\ddagger} 7.7

kcal mol⁻¹) and no splitting of the C-methyl signal (vide infra). If it were the cis-compound (2), a high ringinversion barrier (ΔG_{c}^{\ddagger} ca. 12 kcal mol⁻¹; cf. ring inversion barrier ΔG_{c}^{\ddagger} 11.7 kcal mol⁻¹ for *cis*-1,2,3,6-tetramethyl-1,2-diazacyclohexane)⁴ would be expected to result in splitting of the C-methyl signals. On this basis, the crystalline solid was assigned to the transisomer (1); the *cis*-isomer (2) is a liquid at ambient temperature. trans-Hexamethyltetra-azacyclohexane (1) is also expected to be more ordered and hence more likely to be crystalline than the *cis*-isomer (2) because the C-methyl groups can adopt identical sites. Nonchair conformations for the trans-hexamethyltetraazacyclohexane in solution were discounted on similar grounds to the argument by Nelsen and Weisman⁵ that, 1,2,3,3,6,6-hexamethyl-1,2-diazacyclohexane (3), for twist-boat conformations relieve less of the strain associated with *gauche* interactions inherent in the chair form than distortions in the chair form.

The proton n.m.r. spectrum of (1) consists of the C-H quartet (δ 4.45 and 4.25, ${}^{3}J$ 6.0 Hz), N-CH₃ singlet (δ 2.43), and C-CH₃ doublet (δ 1.06, ${}^{3}J$ 6.0 Hz) signals in appropriate ratios. No change is observed down to ca. -100 °C; below this, broadening due to sample ' freezing ' precluded further analysis. The room-temperature proton-noise-decoupled ¹³C n.m.r. spectrum consists of three lines assigned on relative chemical shift grounds and from the undecoupled spectrum as N-C-N, N-CH₃ and C-CH₃ respectively (Table). At -45 °C conformational broadening of the signals is apparent, most marked for the N-CH₃ signal (Table, Figure). The

Carbon-13 d.n.m.r. data (25.05 MHz) of *trans*-1,2,3,4,5,6hexamethyl-1,2,4,5-tetra-azacyclohexane

Temp.			
(°C)	N-C-N	$N-CH_3$	C-CH3
21 Chemical shift ^a (δ)	65.7	31.3	17.3
	(d, ¹ <i>J</i> сн	(q, ¹ /сн	(q, ¹ /c _H
	146.1)	136.6)	123.3)
-80 ^b	68.7	31.0	$18.2^{'}$
-127 ^b	69.0	37.9 eq	17.4
		22.4 ax	
First broadening data			
<i>t</i> _c (°C)	53	-45	68
$\Delta \omega_{\frac{1}{2}}$ (Hz) ^c	6.5	12.0	ca. 2
Coalescence data ^d			
$t_{\rm c}$ (°C)	-97		
$\Delta \nu$ (p.p.m.)		15.5	
ΔG_{c}^{\ddagger} (kcal mol ⁻¹)		7.7 ± 0.2	
^a Solvent: (CD ₃) ₂ CO;	p.p.m. down	field from	Me.Si: all
coupling data in Hz. ^b So	lvent: CF ₂ Cl	-CD,OD.	 Corrected
for natural line-width (2 H	z). ^d Eyring	equation, r	ef. 6.

signals sharpen up by -70 °C but in the temperature region -90 to -110 °C, the N-CH₃ signal undergoes a second dynamic coalescence and splits into a doublet. At still lower temperatures sample freezing occurs. The Eyring equation ⁶ gives a barrier of 7.7 ± 0.2 kcal mol⁻¹ for the dynamic splitting of the N-CH₃ signal at *ca*. -100 °C. Calculation of precise energies from the Anet-type broadening phenomenon ⁷ observed at *ca*. -45 °C requires estimation of $\Delta \nu$, the chemical shift difference: this is difficult because shifts of the carbon environments in the different conformations of tetraazacyclohexanes are not all known. However, the

Carbon-13 n.m.r. spectra of *trans*-1,2,3,4,5,6-hexamethyl-1,2,4,5-tetra-azacyclohexane at various temperatures (a) in $(CD_3)_2CO$; (b—e) in $CF_2Cl_2-CD_3OD$

temperature range of the broadening suggests 9 to 10 kcal mol⁻¹ for the barrier (minor->major) and *ca*. 2 to 5% for the population of the minor form (assuming $\Delta v = 10$ p.p.m.).

Six-membered chair conformers with three or more adjacent equatorial methyl groups, are destabilized with respect to conformations avoiding this arrangement: (4) for 1,2,3-trimethyl-1,3-diazacyclohexane,⁸ (5) for 2,3,4-trimethyl-1-oxa-3-azacyclohexane,⁹ (6) for *trans*-

1,2,3,6-tetramethyl-1,2-diazacyclohexane,⁴ and (7) for cis-1,2,3,6-tetramethyl-1,2-diazacyclohexane.⁴ The preferred conformation (8) of 1,2,3,3,6,6-hexamethyl-1,2diazacyclohexane (3) also avoids placing three or more adjacent groups equatorial, in spite of the 1,3-syn axial methyl-methyl interactions in (8).⁵ Although twelve non-degenerate forms are possible for trans-hexamethyltetra-azacyclohexane, which are divided by high barriers involving 'passing' electronic interactions into conformational sets as postulated for 1,2,4,5-tetra-, azacyclohexanes,² only two, (9) and (10), remain if those with three adjacent equatorial methyl groups are eliminated. Interconversion between (9a) and its mirror image (9b) is accomplished via low-energy 'nonpassing' N-inversions comparable to the inversions in Set II of 1,2,4,5-tetramethyl-1,2,4,5-tetra-azacyclohexane² and in trans-1,2,3,6-tetramethyl-1,2-diazacyclohexane (6),⁴ but interconversion between (9) and (10) requires 'non-passing' ring inversion. The observed dynamic ¹³C n.m.r. effects are consistent with (9) as the major conformation and probably (10) as the minor form: the first coalescence represents ' freezing' out of (10) while the $(9a) \iff (9b)$ interconversion remains 'fast'. The second coalescence at ca. -100 °C ' slows' the (9a) to (9b) N-inversion, thus confirming that 'non-passing' interconversions within the three conformational sets proposed for 1,2,4,5-tetra-azacyclohexane ² possess ΔG_{c}^{\ddagger} values of *ca*. 7.6 kcal mol⁻¹.

A consideration of the ¹³C chemical shifts of (8) at low temperature confirms that (9a)/(b) must be the major conformer. Nelsen's ¹³C n.m.r. study ⁴ of 1,2-dimethyl-1,2-diazacyclohexane has shown the marked γ -gauche upfield shift effect ¹⁰ experienced at the axial N-CH₃

carbon atom [cf. δ 26.5 in (11ae) conformer for axial Nmethyl carbon atom, and δ 44.8 in (11ee) for equatorial *N*-methyl carbon atom resulting from steric C-H polarizations marked *. Removal of an adjacent equatorial N-methyl group reduces the upfield shift as found in 1,2,4,5-tetramethyl-1,2,4,5-tetra-azacyclohexane which adopts the unsymmetric diequatorial/diaxial conformer (12)²: compare δ 40.0 and 26.5 for the

axial N-methyl carbon atom in (12) and (11ae) respectively. Thus, the axial $N-CH_3$ resonance in (9a)/(b)should be shifted further upfield because the axial carbon atom experiences 4 γ -gauche upfield shift effects (3 C-H and 1 N-lone pair steric polarizations). Indeed the N-methyl signal of (1) at low temperatures splits into two signals (δ 22.4 and 37.9), the upfield part of which is consistent with an axial N-CH₃ carbon atom which is subject to 3 C-H γ -gauche interactions. The observed chemical shifts thus exclude all conformations other than (9a)/(b).

EXPERIMENTAL

Natural abundance C-13 n.m.r. spectra were obtained on a JEOL FX-100 n.m.r. spectrometer operating at 25.05 MHz, using 10 mm JEOL n.m.r. tubes containing ca. 500 mg of solute in 3 ml of solvent. Proton decoupled spectra used standard settings; off-resonance spectra required the ¹H irradiating power low and offset 50.8 kHz. Pulse delay of 6 s was used for n.O.e. suppressed spectra. Dial temperatures were accurate to ± 1 °C by comparison with a copper-constantan thermocouple mounted in an n.m.r. tube.

trans-1,2,3,4,5,6-Hexamethyl-1,2,4,5-tetra-azacyclo-

hexane.—Freshly distilled acetaldehyde (1.6 g, 0.38 mol) was added dropwise to freshly distilled sym-dimethylhydrazine (2 g, 0.35 mol) in sodium dry ether (50 ml) under dry nitrogen at -5 to -10 °C. After 2 h, the tetraazacyclohexane separated and was recrystallised from npentane as prisms, m.p. 32 °C (lit., 3 m.p. 30.5-31 °C) (2.5 g, 87%) [Found (after drying over P_2O_5 at 15 mmHg for 10 h and handling under dry N_2 gas): C, 55.2; H, 11.7; N, 32.3. Calc. for C₈H₂₀N₄: C, 55.8; H, 11.6; N, 32.6%]; m/e 172 (P⁺) and 112 (P⁺ - 60).

[8/662 Received, 10th April, 1978]

REFERENCES

- ¹ Part 88, A. R. Katritzky and R. Patel, Heterocycles, 1978,
- 263.
 ² V. J. Baker, A. R. Katritzky, J.-P. Majoral, A. R. Martin, and J. M. Sullivan, *J. Amer. Chem. Soc.*, 1976, 98, 5748.
 ³ W. Skorianetz and E. sz. Kováts, *Helv. Chim. Acta*, 1970, 53,
- 251. ⁴ S. F. Nelsen and G. R. Weisman, J. Amer. Chem. Soc., 1976,
- 98, 3281. ⁵ G. R. Weisman and S. F. Nelsen, J. Amer. Chem. Soc., 1976,
- 98, 7007.
 ⁶ H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25,
- 1228.7 F. A. L. Anet, I. Yavari, I. J. Ferguson, A. R. Katritzky,
- M. Moreno-Mañas, and M. J. T. Robinson, J.C.S. Chem. Comm., 1976, 399.
- ⁸ A. R. Katritzky, V. J. Baker, I. J. Ferguson, and R. C. Patel, J.C.S. Perkin II, 1979, 143.
- 9 A. R. Katritzky, V. J. Baker, and F. M. S. Brito-Palma, in preparation.
- ¹⁰ N. K. Wilson and J. B. Stothers, Topics Stereochem., 1974, 8, 58.